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Resonant control of the R®sler system
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We develop a method of control, “resonant control,” when a weak resonant perturbation is tuned so as to
drive the system into naturally occurring regimes, namely, periodic orbits, which happen to be unstable for
some nominal parameter value. The results show that nonfeedback control by periodic perturbations can be
goal oriented, and a final state can be predictably targeted. The method allows us to alter nonchaotic as well as
chaotic dynamics using only small perturbations.
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The problem of dynamical system control consists of aodic force or parameter modulati¢6—14]. Provided that a

goal-oriented alteration of its dynamics. For example, insmall perturbation is applied, the controlled periodic orbit
many cases it is important not only to suppress a chaoticlosely traces the corresponding unperturbed one.
behavior but to convert it into a desired regular one. A feed- Although periodic perturbation methods are easy to real-
back method for stabilization of unstable periodic orbits em-ze in practice, their main deficiency is that often it is diffi-
bedded in the chaotic attractor was developed for[thiatits ~ cult to anticipate the result of perturbation, which can give
advantage is the use of weak perturbations. Indeed, becausse to an undesired behavior of system. In other words, there
of the ergodicity of chaotic systems, sooner or later the trais no common concept for construction of appropriate per-
jectory will fall into the vicinity of the desired unstable orbit. turbations which direct the trajectory to the target.
Then it is sufficient Only to move the stable manifOId of the In this paper we propose a method of nonfeedback control
corresponding unstable fixed point in the Poincsgetion 0 \yhen the perturbation is tuned so as to goal-orientedly drive
the sysfcem state point to ;tabll|ze the former. In cases wheghe system into naturally occurring regimes, namely, periodic
the reciprocal of the maximal Lyapunov exponent is shorly it which happen to be unstable for some nominal param-
compared to the time between perturbations, that can lead Qer value. The amplitude of this perturbation is very small,

occasional bl."rStS of lost co_ntrol, or when the c_Jynamlcs IS 104y, \t its resonant effect is enough to alter the system dynamics
fast for real-time computation of the control signal, continu-

ous control strategies based on delayed self-controlling feeGQrasUcally. We call this type of contraesonant control

back, or a combination of feedback with a periodic perturba- Let us form_ulate the cond|t|_o ns of resonant co_ntrol for-
tion, can be applied[2]. These methods(and their regular dynamics. The generalization to the chaotic case is

modifications[3]) have been experimentally verified for dif- straightforward. The main |d.ea of resonant .control is th_at the
ferent chaotic systemgd]. However, in the case when the Wave form of the perturbation must b.e tailored to suit .the
system state is not immediately accessible, the only way of/@ve forms of both the controlled variable and the desired
control is the use of nonfeedback techniques. response. This means th@j the period, phase, amplitude,
One of the approaches to nonfeedback control is the norRNd shape of perturbation have to be tuned so as to compen-
linear entrainment methd®]. It requires a knowledge of the sate for the difference between current and desired wave
system equations to construct control forces which, howeveforms of the controlled variable to provide goal-oriented tar-
can have a large amplitude and a complicated shape, and tgeting; and(ii) the symmetry of the perturbation must corre-
basins of entrainment can have a very complicated structurepond to the symmetry of the desired wave form so as not to
Typically, this method can require as many control forces aslestabilize the latter. Provided that the period of the desired
there are dimensions of the system. response is a multiple of the period of the current wave form,
In contrast, there are many examples of converting chaosondition (i) guarantees the perturbation to be resonant, i.e.,
to a periodic motion by exposing a system to only one periits period has to be equal to or a multiple of the period of
current cycle.
The concept of resonant control can be considered as a
* Author to whom correspondence should be addressed. Presegeneralization of the original concept of geometrical reso-
address: The Nonlinear Centre, Department of Applied Mathematnance[7], requiring that the control force preserve a natural
ics and Theoretical Physics, University of Cambridge, Silver Streetresponse from the underlying conservative system, to the

Cambridge CB3 9EW, U.K. Electronic address: case when the weak perturbation drives the trajectory to fol-
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FIG. 1. (a) Control of the period-2 cycled=3.2) onto the
period-1 cycle. Beginning with=140 and 213.4, random fluctuat-
ing forces with mean value 0, mean-squared value 1, and amp
tudes 0.15 and 0.25, respectively act on the systginControl
perturbation with periodl'; =5.8679 and amplitudea=0.23 and
0.26, turned on at=49.1 and 213.4, respectively.

Let us consider controlling the Rsler systenj15] as an
example:

X=—-y—2,

y=x+ay+F(t), (1)

z=b+z(x—c),

wherea=b=0.2,c is the bifurcation parameter, afdt) is
the control force.

Let the bifurcation parameter correspond to a stabl
period-2 cycle ¢=3.2). To stabilize the cycle of period 1,
we use the negative pulse train, shown in Fi¢h)1with
period T,=27/w,, Where w;=1.0708 is the fundamental
frequency of the Rssler systeni16]. If these pulses are in
phase with the positive peaks of the controlled variagle

FIG. 2. () Control of the period-1 cycled=2.5) onto the
period-2, -4, and -8 cycles, respectivel§p) Control perturbation
with periodT,=11.4688,T,=2T,, andTg=4T,, and amplitudes
lie=0.04, 0.08, and 0.080.06 for lower pulsesturned on att
=48.7, 140.4, and 232.3, respectively.

positive (or negative peaks of the controlled variable, then
at sufficient amplitudes of perturbation, the cycle of period 2
is stabilized[see Fig. 2a)]. Keeping the same phase and
using the pulse trains with period,=2T, andTg=4T,, as

it is shown in Fig. 2Zb) in the time intervals 1404t
<232.3 and=232.3, one stabilizes cycles of periods 4 and
8, respectivel\fsee Fig. 2a)].

The phase of perturbation can play a crucial role in reso-
nant control. Keeping a perturbation precisely in phase with
the controlled variable provides the most effective way of
targeting, that ensures the smallest sufficient amplitude of
external force. However, changing the phase of perturbation
N the opposite onéoy 1809 can bring a system to an “op-
posite” behavior. Let the period-4 cycle be stable for the
unperturbed systencE4). To stabilize the period-8 cycle,
we use a perturbation with peridd,=11.5729, as shown in
Fig. 3(b). The symmetry of this perturbation fits well not
only a period-2 cycle but higher order cycles too. Indeed, fit-

then the perturbation will target the trajectory to the period-1

cycle, so that, at a sufficient amplitude of force, it will be
stabilized[see Fig. 1a)]. Beginning witht=140 and 213.4,

random fluctuating forces with mean value 0, mean-square
value 1, and amplitudes 0.15, and 0.25, respectively, act o

the right-hand sides of Egél). To control the system with a

higher level of noise effectively, we increased the amplitude

of perturbation[see Fig. &), t=213.4. The results show

that a resonant perturbation controls the noisy system rathi
successfully, provided that its amplitude is not less than thi

amplitude of the random forces.

Consider the opposite transition. Let the system dynamic

correspond to the period-1 cycle2.5). In order to direct
the trajectory to the period-2 cycle it is necessary to breal
the symmetry of the former cycle. For that, the system is
forced so that every first and second peak of the controlle
variabley will be pushed up and down, respectively. So, we
use a train of positive and negative pulses with peflgd

power spectrum at the given value of paramet¢l6] [see
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Fig. 2(b), 48.7<t<<140.4. If the pulses are phased with is changed on 180° dt=212.4.

=11.5729 and amplitude=0.05 turned on at=73.5. The phase
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FIG. 4. (a) Control of the chaotic attractorc& 4.45) onto the FIG. 5. (a) Control of the chaotic attractorc& 4.45) onto the

period-2, -4, and -8 cyclegb) Control perturbation with period period-8 cycle.(b) Control perturbation with periodg=46.5778
T,=11.6667 and amplitudes=0.135, 0.09, and 0.075 turned on and amplitudea=0.08 (0.075 for lower pulsesturned on att
att=56.8, 126.8, and 226.3, respectively. =86.3.

ting negative and positive pulses to low and high positiveparameterc, provided that th!s modulation fits the wave
form of one of the system variables.

peaks of variabley, respectively, we will pull the former Alond wi ;
AN . g with the period and phase, the shape of the pertur-
down and the latter up, thus directing the trajectory to theoation can be very important too. Indeed, reshaping a pertur-

desired cycldsee Fig. &), 73'5$t<0212'4]' Let us change  pation can lead to a redistribution of energy between its har-
the phase of the pulse train on 180°, as shown in Rig. &  monics, and, hence, to an enhancement or suppression of the
t=212_.4. Unlike the previous case, th|§ perturbation direct$,g3rmonics which govern the system dynamics. The example
the trajectory to the period-2 cycleee Fig. 8a), t=212.4.  of a forced Duffing equation, when reshaping the driving
So the same perturbation but with different phases provideforce increases the effective amplitude of a harmonic which
entirely different dynamics. is responsible for a transition from regular to chaotic dynam-
The same approach can be applied to chaotic dynamicgs, is considered in Ref8].
when the system trajectory is in the vicinity of the cycle to  In contrast to the nonfeedback scheme for creation of de-
be stabilized. Let the system dynamics correspond to a chaired outputs outlined in Ref9], our method does not need
otic attractor ¢=4.45). Choosing the phase of perturbation,a priori analytical knowledge of the system dynamics. The
say, a pulse train with periofl,=11.6667, to fit the positive fundamental frequency can be obtained from the power spec-
(or negativé peaks of variable, one stabilizes the period-2 trum. The procedure does not use any specific information
cycle (see Fig. 4, 56.8t<126.8. As the symmetry of this about the desired response. The pertur_bqtlons have been ch_o-
perturbation fits the symmetry of higher order cycles, it isS€N SO as to target the trajectory to anticipated unstable peri-
possible to stabilize the latter. Indeed, decreasing the amplRdiC orbits. To reveal the unstable skeleton of the system in

tude of forcing, one can control the cycles of higher periodsadvance’ cc_)nventional techniques may _be, app“_ed- If the sys-
fem analysis(say, power spectrum, Poincasection, eto.

drc])wnt_ to th? ﬂ::r.eShOIZ vr?lue \t/\r/]hen tTe l:j{jnamilcs ?ecqm&a ndicates a chaotic dynamics, then unstable periodic orbits
Z :r? dICBaigr]\a;Eé tli?r:je:eintesrvz\llviz GS&CEI;;(E)S g a%tcfzoz 6pg”° an be extracted from a delay coordinate vector of an observ-
. . e : - > able variabld 17]. Otherwise, if the system possesses regular
respectively. 5o, one obtains an inverse cascade of pe_r'o‘ﬁil'ynamics, it is possible to utilize noise to learn about un-
doubling bifurcations, the amplitude of perturbation varyinggiapje orbitd18].
much less than the bifurcation parametein the straight The proposed approach can explain some previous studies
period-doubling cascade. Similar results are obtained by Ussn chaos suppression. For example, applied to thesRp
ing the pulse train with period,= 2T, as a control pertur-  system, the method of chaos suppression through changes in
bation. This perturbation stabilizes the period-4 cycle andhe system variables in the Poincared Lorenz sectior|d.0]
higher order cycles which are multiples of it. is nothing but directing the system trajectory by resonant
Another way to stabilize higher order cycles is to use aperiodic pulses. Another example, when weak periodic
perturbation with the same period as the period of the cyclenodulation of a bifurcation parameter of thé fter system
to be controlled. Figure 5 illustrates the stabilization of atames chaos, is given in Rdfl1]. Again, the perturbation
period-8 cycle by the pulse train with peridg=46.5778. appears to fit both the system variable and the stabilized
Tuning the control force to the wave form of variabl®r  cycle. The importance of choosing an appropriate phase of
z, one can obtain the same results. However, the perturbgerturbation for eliminating chaos was shown analytically
tions which are tailored to variablg need slightly smaller [7,12] and numerically{7,12,13 for a forced Duffing equa-
amplitudes to achieve stabilization, probably because th&on, and experimentally for a laser with modulated losses
system trajectory and trajectories of unstable cycles argl4].
closer in the phase space in the direction of gi$he same The goal of the present paper is to show tliphonfeed-
results as above can also be obtained by a tiny modulation dfack control by periodic perturbations can be goal oriented,
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and a final state can be predictably targeted; @ndaoncha- Both of us are grateful to D. Goodings for fruitful discus-
otic dynamics can be altered by weak perturbations. Weions, as well as S. Haykin and the Neural Networks Group
showed that nonfeedback control by resonant perturbationsf the CRL for providing facilities for us to work. V. T.
“resonant control,” works very well for the Rasler system. wishes to acknowledge support from the Royal Society, and
The application of the procedure to other systems will beto thank R. S. MacKay for discussions and helpful com-

considered in a forthcoming paper. ments.
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