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Resonant control of the Rössler system
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We develop a method of control, ‘‘resonant control,’’ when a weak resonant perturbation is tuned so as to
drive the system into naturally occurring regimes, namely, periodic orbits, which happen to be unstable for
some nominal parameter value. The results show that nonfeedback control by periodic perturbations can be
goal oriented, and a final state can be predictably targeted. The method allows us to alter nonchaotic as well as
chaotic dynamics using only small perturbations.
@S1063-651X~98!11507-6#

PACS number~s!: 05.45.1b
f
in

ot
ed
m

a
tra
t.
he

h
or
d
to
u
e

ba

f-
e
y

o

ve
d
u
a

a
er

bit

al-
-

ve
ere
er-

trol
rive
dic
am-
all,

ics

or
e is
the
he
red
,
pen-
ave
ar-
e-
t to

ired
rm,
i.e.,
of

s a
so-
ral
the
fol-
ed

s
a

ee
The problem of dynamical system control consists o
goal-oriented alteration of its dynamics. For example,
many cases it is important not only to suppress a cha
behavior but to convert it into a desired regular one. A fe
back method for stabilization of unstable periodic orbits e
bedded in the chaotic attractor was developed for that@1#. Its
advantage is the use of weak perturbations. Indeed, bec
of the ergodicity of chaotic systems, sooner or later the
jectory will fall into the vicinity of the desired unstable orbi
Then it is sufficient only to move the stable manifold of t
corresponding unstable fixed point in the Poincare´ section to
the system state point to stabilize the former. In cases w
the reciprocal of the maximal Lyapunov exponent is sh
compared to the time between perturbations, that can lea
occasional bursts of lost control, or when the dynamics is
fast for real-time computation of the control signal, contin
ous control strategies based on delayed self-controlling fe
back, or a combination of feedback with a periodic pertur
tion, can be applied@2#. These methods~and their
modifications@3#! have been experimentally verified for di
ferent chaotic systems@4#. However, in the case when th
system state is not immediately accessible, the only wa
control is the use of nonfeedback techniques.

One of the approaches to nonfeedback control is the n
linear entrainment method@5#. It requires a knowledge of the
system equations to construct control forces which, howe
can have a large amplitude and a complicated shape, an
basins of entrainment can have a very complicated struct
Typically, this method can require as many control forces
there are dimensions of the system.

In contrast, there are many examples of converting ch
to a periodic motion by exposing a system to only one p
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odic force or parameter modulation@6–14#. Provided that a
small perturbation is applied, the controlled periodic or
closely traces the corresponding unperturbed one.

Although periodic perturbation methods are easy to re
ize in practice, their main deficiency is that often it is diffi
cult to anticipate the result of perturbation, which can gi
rise to an undesired behavior of system. In other words, th
is no common concept for construction of appropriate p
turbations which direct the trajectory to the target.

In this paper we propose a method of nonfeedback con
when the perturbation is tuned so as to goal-orientedly d
the system into naturally occurring regimes, namely, perio
orbits, which happen to be unstable for some nominal par
eter value. The amplitude of this perturbation is very sm
but its resonant effect is enough to alter the system dynam
drastically. We call this type of controlresonant control.

Let us formulate the conditions of resonant control f
regular dynamics. The generalization to the chaotic cas
straightforward. The main idea of resonant control is that
wave form of the perturbation must be tailored to suit t
wave forms of both the controlled variable and the desi
response. This means that~i! the period, phase, amplitude
and shape of perturbation have to be tuned so as to com
sate for the difference between current and desired w
forms of the controlled variable to provide goal-oriented t
geting; and~ii ! the symmetry of the perturbation must corr
spond to the symmetry of the desired wave form so as no
destabilize the latter. Provided that the period of the des
response is a multiple of the period of the current wave fo
condition ~i! guarantees the perturbation to be resonant,
its period has to be equal to or a multiple of the period
current cycle.

The concept of resonant control can be considered a
generalization of the original concept of geometrical re
nance@7#, requiring that the control force preserve a natu
response from the underlying conservative system, to
case when the weak perturbation drives the trajectory to
low ana priori chosen natural response from the unperturb
dissipative system.
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Let us consider controlling the Ro¨ssler system@15# as an
example:

ẋ52y2z,

ẏ5x1ay1F~ t !, ~1!

ż5b1z~x2c!,

wherea5b50.2,c is the bifurcation parameter, andF(t) is
the control force.

Let the bifurcation parameter correspond to a sta
period-2 cycle (c53.2). To stabilize the cycle of period 1
we use the negative pulse train, shown in Fig. 1~b!, with
period T152p/v1 , wherev151.0708 is the fundamenta
frequency of the Ro¨ssler system@16#. If these pulses are in
phase with the positive peaks of the controlled variabley,
then the perturbation will target the trajectory to the period
cycle, so that, at a sufficient amplitude of force, it will b
stabilized@see Fig. 1~a!#. Beginning witht5140 and 213.4,
random fluctuating forces with mean value 0, mean-squa
value 1, and amplitudes 0.15, and 0.25, respectively, ac
the right-hand sides of Eqs.~1!. To control the system with a
higher level of noise effectively, we increased the amplitu
of perturbation@see Fig. 3~b!, t>213.4#. The results show
that a resonant perturbation controls the noisy system ra
successfully, provided that its amplitude is not less than
amplitude of the random forces.

Consider the opposite transition. Let the system dynam
correspond to the period-1 cycle (c52.5). In order to direct
the trajectory to the period-2 cycle it is necessary to br
the symmetry of the former cycle. For that, the system
forced so that every first and second peak of the contro
variabley will be pushed up and down, respectively. So, w
use a train of positive and negative pulses with periodT2
511.4688, which corresponds to the first subharmonic of
power spectrum at the given value of parameterc @16# @see
Fig. 2~b!, 48.7<t,140.4#. If the pulses are phased wit

FIG. 1. ~a! Control of the period-2 cycle (c53.2) onto the
period-1 cycle. Beginning witht5140 and 213.4, random fluctua
ing forces with mean value 0, mean-squared value 1, and am
tudes 0.15 and 0.25, respectively act on the system.~b! Control
perturbation with periodT155.8679 and amplitudesa50.23 and
0.26, turned on att549.1 and 213.4, respectively.
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positive ~or negative! peaks of the controlled variable, then
at sufficient amplitudes of perturbation, the cycle of period
is stabilized@see Fig. 2~a!#. Keeping the same phase and
using the pulse trains with periodT452T2 andT854T2 , as
it is shown in Fig. 2~b! in the time intervals 140.4<t
,232.3 andt>232.3, one stabilizes cycles of periods 4 and
8, respectively@see Fig. 2~a!#.

The phase of perturbation can play a crucial role in reso
nant control. Keeping a perturbation precisely in phase wit
the controlled variable provides the most effective way o
targeting, that ensures the smallest sufficient amplitude
external force. However, changing the phase of perturbatio
on the opposite one~by 180°! can bring a system to an ‘‘op-
posite’’ behavior. Let the period-4 cycle be stable for the
unperturbed system (c54). To stabilize the period-8 cycle,
we use a perturbation with periodT2511.5729, as shown in
Fig. 3~b!. The symmetry of this perturbation fits well not
only a period-2 cycle but higher order cycles too. Indeed, fi

li-

FIG. 2. ~a! Control of the period-1 cycle (c52.5) onto the
period-2, -4, and -8 cycles, respectively.~b! Control perturbation
with periodT2511.4688,T452T2 , andT854T2 , and amplitudes
a50.04, 0.08, and 0.08~0.06 for lower pulses! turned on att
548.7, 140.4, and 232.3, respectively.

FIG. 3. ~a! Control of the period-4 cycle (c54) onto the
period-8 and -2 cycles.~b! Control perturbation with periodT2

511.5729 and amplitudea50.05 turned on att573.5. The phase
is changed on 180° att5212.4.



iv

th

c

ide

ic
to
ch
n

2

is
p
d
e

od

rio
ng

u

n

c
a

rb

th
a

n

-

e

-

-

o-
i-

-

-

s

in

f

,

n

PRE 58 425RESONANT CONTROL OF THE RO¨ SSLER SYSTEM
ting negative and positive pulses to low and high posit
peaks of variabley, respectively, we will pull the former
down and the latter up, thus directing the trajectory to
desired cycle@see Fig. 3~a!, 73.5<t,212.4#. Let us change
the phase of the pulse train on 180°, as shown in Fig. 3~b! at
t5212.4. Unlike the previous case, this perturbation dire
the trajectory to the period-2 cycle@see Fig. 3~a!, t>212.4#.
So the same perturbation but with different phases prov
entirely different dynamics.

The same approach can be applied to chaotic dynam
when the system trajectory is in the vicinity of the cycle
be stabilized. Let the system dynamics correspond to a
otic attractor (c54.45). Choosing the phase of perturbatio
say, a pulse train with periodT2511.6667, to fit the positive
~or negative! peaks of variabley, one stabilizes the period-
cycle ~see Fig. 4, 56.8<t,126.8!. As the symmetry of this
perturbation fits the symmetry of higher order cycles, it
possible to stabilize the latter. Indeed, decreasing the am
tude of forcing, one can control the cycles of higher perio
down to the threshold value when the dynamics becom
chaotic again. Figure 4 shows the controlled cycle of peri
4 and 8 in the time interval 126.8<t,226.3 andt>226.3,
respectively. So, one obtains an inverse cascade of pe
doubling bifurcations, the amplitude of perturbation varyi
much less than the bifurcation parameterc in the straight
period-doubling cascade. Similar results are obtained by
ing the pulse train with periodT452T2 as a control pertur-
bation. This perturbation stabilizes the period-4 cycle a
higher order cycles which are multiples of it.

Another way to stabilize higher order cycles is to use
perturbation with the same period as the period of the cy
to be controlled. Figure 5 illustrates the stabilization of
period-8 cycle by the pulse train with periodT8546.5778.

Tuning the control force to the wave form of variablex or
z, one can obtain the same results. However, the pertu
tions which are tailored to variabley need slightly smaller
amplitudes to achieve stabilization, probably because
system trajectory and trajectories of unstable cycles
closer in the phase space in the direction of axisy. The same
results as above can also be obtained by a tiny modulatio

FIG. 4. ~a! Control of the chaotic attractor (c54.45) onto the
period-2, -4, and -8 cycles.~b! Control perturbation with period
T2511.6667 and amplitudesa50.135, 0.09, and 0.075 turned o
at t556.8, 126.8, and 226.3, respectively.
e

e

ts

s

s,

a-
,

li-
s
s
s

d-

s-

d

a
le

a-

e
re

of

parameterc, provided that this modulation fits the wave
form of one of the system variables.

Along with the period and phase, the shape of the pertur-
bation can be very important too. Indeed, reshaping a pertur
bation can lead to a redistribution of energy between its har-
monics, and, hence, to an enhancement or suppression of th
harmonics which govern the system dynamics. The example
of a forced Duffing equation, when reshaping the driving
force increases the effective amplitude of a harmonic which
is responsible for a transition from regular to chaotic dynam-
ics, is considered in Ref.@8#.

In contrast to the nonfeedback scheme for creation of de
sired outputs outlined in Ref.@9#, our method does not need
a priori analytical knowledge of the system dynamics. The
fundamental frequency can be obtained from the power spec
trum. The procedure does not use any specific information
about the desired response. The perturbations have been ch
sen so as to target the trajectory to anticipated unstable per
odic orbits. To reveal the unstable skeleton of the system in
advance, conventional techniques may be applied. If the sys
tem analysis~say, power spectrum, Poincare´ section, etc.!
indicates a chaotic dynamics, then unstable periodic orbits
can be extracted from a delay coordinate vector of an observ
able variable@17#. Otherwise, if the system possesses regular
dynamics, it is possible to utilize noise to learn about un-
stable orbits@18#.

The proposed approach can explain some previous studie
on chaos suppression. For example, applied to the Ro¨ssler
system, the method of chaos suppression through changes
the system variables in the Poincare´ and Lorenz sections@10#
is nothing but directing the system trajectory by resonant
periodic pulses. Another example, when weak periodic
modulation of a bifurcation parameter of the Ro¨ssler system
tames chaos, is given in Ref.@11#. Again, the perturbation
appears to fit both the system variable and the stabilized
cycle. The importance of choosing an appropriate phase o
perturbation for eliminating chaos was shown analytically
@7,12# and numerically@7,12,13# for a forced Duffing equa-
tion, and experimentally for a laser with modulated losses
@14#.

The goal of the present paper is to show that~i! nonfeed-
back control by periodic perturbations can be goal oriented

FIG. 5. ~a! Control of the chaotic attractor (c54.45) onto the
period-8 cycle.~b! Control perturbation with periodT8546.5778
and amplitudea50.08 ~0.075 for lower pulses! turned on att
586.3.
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and a final state can be predictably targeted; and~ii ! noncha-
otic dynamics can be altered by weak perturbations.
showed that nonfeedback control by resonant perturbati
‘‘resonant control,’’ works very well for the Ro¨ssler system.
The application of the procedure to other systems will
considered in a forthcoming paper.
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J. Bifurcation Chaos Appl. Sci. Eng.6, 1351~1996!.

@11# A. S. Mikhailov and A. Yu. Loskutov,Foundations of Syner-
getics II: Chaos and Noise, 2nd ed.~Springer-Verlag, Berlin,
1996!, pp. 97 and 98.

@12# R. Chaco´n, Phys. Rev. E51, 761 ~1995!; 52, 2330~1995!.
@13# Z. Qu, G. Hu, G. Yang, and G. Qin, Phys. Rev. Lett.74, 1736

~1995!.
@14# R. Meucci, W. Gadomski, M. Ciofini, and F. T. Arecchi, Phy

Rev. E 49, R2528 ~1994!; D. Dangoisse, J.-C. Celet, and P
Glorieux, ibid. 56, 1396 ~1997!; V. N. Chizhevsky, R. Cor-
balán, and A. N. Pisarchik,ibid. 56, 1580~1997!.
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